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ABSTRACT
While presenting a photorealistic appearance plays a major role in
immersion in Augmented Virtuality environment, displaying that
of real objects remains a challenge. Recent developments in pho-
togrammetry have facilitated the incorporation of real objects into
virtual space. However, reproducing complex appearances, such as
subsurface scattering and transparency, still requires a dedicated
environment for measurement and possesses a trade-off between
rendering quality and frame rate.

Our NeARportation framework combines server–client bidirec-
tional communication and neural rendering to resolve these trade-
offs. Neural rendering on the server receives the client’s head posture
and generates a novel-view image with realistic appearance repro-
duction that is streamed onto the client’s display. By applying our
framework to a stereoscopic display, we confirm that it can display a
high-fidelity appearance on full-HD stereo videos at 35-40 frames
per second (fps) according to the user’s head motion.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality.
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1 INTRODUCTION
Photorealistic reproduction of the appearance and shape of real-
world objects in virtual form is important in enhancing immersion
and value judgments in a wide range of VR and AR applications.

This is a preprint to be presented at 
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However, it remains difficult to reproduce the photorealistic ap-
pearance aspects of real objects, such as gloss, transparency, and
subsurface scattering, on displays.

Recent mobile photogrammetry technology allows nonexperts to
measure the shape and color of real objects and easily import them
into virtual space. However, these photogrammetry technologies
assume that the surface is constant in radiance from any view angle.
Thus, the surfaces of the reproduced subjects often possess a plaster-
like texture. Researchers often utilize special hardware such as dome-
shaped setups with structural light and multiple cameras [6, 16]
to measure the complex, viewpoint-dependent light scattering on
its surface, which is both costly and inaccessible. Moreover, even
if complex light-scattering models can be measured, high-quality
rendering models that can represent light scattering, such as ray
tracing, create a trade-off between image quality and frame rate.

To resolve these trade-offs in measurement and rendering, we
propose NeARpotation, a framework that combines server-client
bidirectional communication and neural rendering. NeARportation
interactively displays the photorealistic appearances of real objects
measured from readily available color images. In this framework,
an AR/VR device communicates with a remote GPU server run-
ning neural radiance fields (NeRF) [17] to generate and transmit
images according to the user’s viewpoint. We apply our framework
to a naked-eye stereoscopic display and show that our framework
can render photorealistic full-HD images at around 35 fps from
stereoscopic viewpoints, tracking the user’s viewpoint position.

To the best of our knowledge, this is the first demonstration that
neural rendering has the potential to interactively benefit AR/VR
applications at reasonable frame rates and latencies on high-end
display devices. Our major contributions include the following:

• Proposing NeARportation, a remote, real-time neural rendering
framework for displaying photorealistic appearance in AR/VR
devices.

• Demonstrating a proof-of-concept system of the NeARportation
framework on a naked-eye stereoscopic display.

• Evaluating the reproducibility of appearance, achievable frame
rate, and motion-to-photon latency in stereoscopic rendering.

• Providing discussions and future research directions for the cur-
rent NeARportation framework.

2 RELATED WORK
Reproducing the photorealistic appearance of real objects has long
been a research challenge. Conventional rendering approaches ex-
plicitly estimate a reflective model of an object’s surface in repro-
ducing a photorealistic appearance. Hardware approaches include

https://doi.org/10.1145/3562939.3565616
https://doi.org/10.1145/3562939.3565616


VRST ’22, November 29-December 1, 2022, Tsukuba, Japan Yuichi Hiroi, Yuta Itoh, and Jun Rekimoto

domed structural lighting and cameras [3, 6, 16] or light field cam-
eras [18, 21, 32], yet these dedicated camera systems maintain ex-
tensive measurement and reproduction costs. While deep neural
network-based methods can estimate reflection models from color
cameras [1, 14, 30], it remains difficult to generalize explicit reflec-
tion estimations to various object appearances.

Real-time rendering is a continuous research theme, mainly in
game graphics [11]. When rendering a realistic appearance, ray cast-
ing in the rendering process can dramatically improve the expressive
power of the image. However, state-of-the-art full ray-casting real-
time rendering requires over 11 GB of GPU memory [13], making it
unsuitable for AR/VR devices with relatively low computing power
and less energy for extended use.

NeRF [17] employs volume rendering to compose new view
images and can handle light attenuation and transparent objects.
NeRF has developed remarkably within the past few years [36], and
new models have further extended appearance representation [27, 33,
35] and realized real-time inference [4, 7, 12, 19, 31]. Our framework
aims to achieve multiview, realistic appearance, and high-frame rate
rendering in AR/VR by leveraging both the real-time performance
and appearance representation of NeRF.

While recent NeRF architectures can generate various appear-
ances in real time for AR/VR applications, the trade-offs of resolu-
tion, number of viewpoints, and computing resources remain unre-
solved. Our framework introduces a remote rendering system [25]
that facilitates the process of rendering 3D graphics when the com-
puting power of the local device is insufficient. In remote rendering,
point cloud streaming [23, 29] and video streaming rendered by
ray tracing [10, 24] exist as 3D content delivery. However, these
works do not fully consider the application of neural rendering in
remote rendering, except for a conccurent work [15] that uses re-
mote rendering using NeRF with game engines. While the focus
of this concurrent work is NeRF interaction in VR, we focus on
stereoscopic and high-resolution presentation in the present study.

3 SYSTEM OVERVIEW
Figure 1 shows a system overview diagram of NeARportation. Our
framework utilizes WebRTC-based remote rendering between a
client with low computational resources (Fig 1, top) and a GPU
server (Fig 1, bottom).

The client consists of a sensor (e.g., a camera) to acquire the
user’s head pose, displays for rendered images streamed from the
server, RTC peers, and an application such as a game engine. The
server consists of the main process that mediates data transmission
and reception, NeRF-based renderers, and RTC peers. The main
process on the server includes a single receiver and senders equal to
the number of peers. These peers and NeRF renderers are launched
with the same number of displays on the client. Each RTC peer
connects to internal processes with interprocess communication
(IPC) to mediate between the processes and the P2P connection.

Before remote rendering, the client uploads a video of the object
to be reconstructed in advance to train the NeRF model, which
corresponds to the design of a virtual 3D scene in conventional
AR/VR applications. Using the trained NeRF model, the server
and client peers establish P2P connections. After connecting, the
server sends the client the intrinsic parameters of the camera used
to capture the video. The client sets the virtual cameras using the
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Figure 1: An overview of the NeARportation framework.

received parameters to reproduce the actual size of the real objects.
If there are multiple viewpoints on the client (e.g., stereopsis), the
virtual cameras are set for all viewpoints.

When the client completes the configuration of the virtual cam-
eras at every frame, the application sends the pose matrix of each
viewpoint camera to the server. Each packet received also contains
labels for each viewpoint (e.g., for the left and right eye in the case
of a stereoscopic display). The receiver on the server reads this la-
bel and distributes the pose matrix to the corresponding renderer
process.

Each renderer on the server includes a buffer to store the pose
matrix and a NeRF process. The pose matrix sent from the receiver
to the renderer is stored in the pose matrix buffer. The matrix on the
pose buffer is always overwritten with the latest one, and then the
NeRF acquires the latest pose matrix and starts a new rendering im-
mediately after the rendering is finished. After the NeRF completes
the image rendering, it sends the image to the sender corresponding
to each virtual camera label. The sender then delivers the rendered
images to the client through MediaStream on WebRTC. Finally, the
client draws the received images on the texture of a planar object
that aligns exactly with each virtual camera’s field of view to present
them on the displays.

4 IMPLEMENTATION
We implement a proof-of-concept system for displaying photorealis-
tic appearance using NeARportation by applying our framework to
a stereoscopic display.

4.1 Server Architecture
We use a desktop machine with Ubuntu 20.04 OS, 2x Intel (R) Core
(TM) i9-10920X CPU @ 3.50 GHz, and 2x NVIDIA GeForce RTX
3090 GPUs as a server-side machine. This machine is connected to
a 1-GbE wired network.
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Camera
Camera

Figure 2: (Left) The naked-eye stereoscopic display used in our
prototype (SONY ELF-SR1). The camera above the display
detects the user’s head pose. (Right) A user viewing an image
on a stereoscopic display. The head posture detected by the
camera is synchronized with the virtual camera to show the
same perspective image on display.

We adopt instant neural graphics primitive (instant-ngp) [19] for
the NeRF renderer. We launch instant-ngp instances on two different
GPUs. Each NeRF renderer process accesses instant-ngp through
Python binding.

We use Momo and Ayame Labo (Shiguredo Corp.) as WebRTC
clients and the signaling server, respectively. Momo clients encode
and stream the videos from the virtual camera devices activated
on the server. We choose VP 8 as an encoding format. As an IPC
pipeline, we use nanomsg1 as a messaging library, which establishes
an IPC pipeline via port-to-port TCP connections.

4.2 Client Architecture
We use a desktop machine with Windows 10, an AMD Ryzen 5950X
CPU @ 3.40GHz, and an NVIDIA GeForce RTX 3090 GPU as a
client-side machine. This machine is connected to a 2.4-GHz Wi-Fi
network in a 1-GbE LAN environment. The server and client are
connected to different network segments.

As a naked-eye stereoscopic display, we use a Sony ELF-SR1
(Fig. 2). The display comprises a 3840 × 2160-pixel LCD panel
angled at 45◦ and a high-speed camera sensor for tracking the user’s
head pose. Micro-optical lenses are installed on the front of the
panel to guide two images to the left and right eyes to achieve
stereoscopic viewing. Corresponding to the training images, we use
the half-resolution of this panel (full HD).

We implement the virtual application in Unity 2020.3.36f and
Sony Spatial Display SDK for Unity. The head posture detected
by the sensor is immediately reflected in the anchors of the virtual
cameras in the left and right eyes. The images rendered from the
virtual cameras are fused according to the microlens geometry. We
use Microsoft MixedReality-WebRTC2 as a WebRTC client. The
client applies the video received from the server to a planar object.

4.3 Training Image Acquisition
For stereopsis, a stereo image pair must use the correct disparity
according to the user’s interpupil distance. Although NeRF gener-
ally uses COLMAP [22] to roughly determine initial camera poses,
COLMAP does not match the actual size of objects or their vertical
orientation with reality. Instead, we place the ChArUCo [8] marker
under the object and capture training images around the object.

1https://nanomsg.org/
2https://github.com/microsoft/MixedReality-WebRTC
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Figure 3: Qualitative performance overview of the NeARporta-
tion framework. (a) Captured images of real objects. (b) Real
capture images of the reproduced appearances displayed on
ELF-SR1, taken from two different viewpoints. Note that par-
allax artifacts appear in the images capturing the stereoscopic
display because each image is taken directly with a monocular
camera. This framework is interactive and is best viewed on
video; thus, we urge readers to view our supplemental video.

We train instant-ngp in 3 × 104 steps with a batch size of 218,
which takes approximately 4 minutes. When rendering, we crop only
the area above the ChArUco board to improve the frame rate.

5 EXPERIMENTS
We evaluated the reproducibility of complex appearances when dis-
playing the captured objects and the performance of our prototype.

5.1 Appearance Reproduction
We captured real objects with complex appearances and displayed
the reproduced stereo images with our NeARportation prototype.
To obtain training images, we first captured the object with the
iPhone SE 2 for 3-5 minutes and cropped the video as images at 2
fps. These images were trained in instant-ngp and displayed on the
application using our NeARportation framework. Figure 3 (a) shows
examples of our training images. The objects used in the experiment
and the number of training images are as follows: a kiwi cut in half
(267 images), agar jelly with fruits (288 images), a tea whisk (274
images), a metallic cup (317 images), and a CD (440 images).

Figure 3 (b) shows the reproduced appearances. From the 1st
and 2nd rows of Fig. 3, we confirmed that NeARportation could
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Figure 4: Transitions of (top) frame rate and (bottom) RTL and
rendering latency when we keep NeARportation running for 10
seconds. The gray area represents when the application checks
the communication between the client and the server at regular
intervals.

interactively display the sparkling at the cross-section of a kiwi or
the complex refraction in agar from novel viewpoints. Additionally,
we confirmed that our framework has sufficient reproducibility for
subtle, gaze-dependent appearances following the user’s head mo-
tion, such as very thin objects (3rd row), mirror reflections (4th row),
and structural colors (5th row).

5.2 Performance Evaluation
Our NeARportation framework is intended to perform neural ren-
dering interactively. To evaluate the performance toward this goal,
we measure the current prototype’s frame rate and round-trip la-
tency (RTL) for 10 seconds. To measure these metrics, we added
millisecond timestamps to packets sent by the client. The server then
returned the timestamp received from the client intact; at the same
time, it returned the corresponding image. The client measured the
RTL by the difference between the current time and the received
timestamp and the frame rate by the timestamp interval. We also
added the rendering time of instant-ngp for each image to the re-
turned packet to determine the percentage of NeRF rendering in the
RTL. During the measurement, the users move their heads to see the
effect on rendering time.

Figure 4 shows the results of the performance measurement. In
the current implementation, the application regularly checks whether
P2P communication between the client and server is sustained.
Therefore, video streaming is momentarily interrupted during this
period (approximately 200 ms). Both frame rate and latency are
restored to their original values after the application confirms com-
munication with the server.

From Figure 4 (a), the frame rate of our prototype is around
35 ∼ 40 fps, which confirms that our prototype can provide sufficient
frame rates for interactive applications such as games and videos. In
contrast, we need further improvements to achieve the frame rates
required for modern VR headsets (>90 fps) [5]. We will discuss
the ways to extend our framework to higher frame rates in terms of
cloud computing and improved neural network models.

From Figure 4 (b), the RTL of this prototype oscillates at about
100 ∼ 400 ms. Additionally, we see that the rendering time of instant-
ngp is almost constant regardless of the head position (30 ∼ 40 ms).
From the results, we confirmed that most of the RTL on this system
depends on round-trip latency on the network. This RTL could
be improved with future network bandwidth improvements. Later,
we discuss possible research directions to compensate for network
latency by predicting head motion.

6 DISCUSSION AND FUTURE WORK
We investigate the remaining issues of the current NeARportation
framework and discuss the prospects of future research directions.

Head Motion Prediction. An RTL exceeding 20 ms is perceived
to have detrimental effects [20]. However, due to the nature of our
framework, which uses remote rendering, it is difficult to keep la-
tency below 20 ms. Compensating for this latency is currently out of
scope, as this paper focuses on proving the concept for our frame-
work. One future research direction involves compensating for this
RTL using motion prediction, such as the Kalman filter-based ap-
proaches [9, 28] or a time-sequential neural network model [34].

Improving Frame Rate. Reducing rendering time is essential for
improving the frame rate. A simple approach to reduce rendering
time is distributed rendering with multiple GPUs, in which poses
stored in a buffer are split and rendered on multiple GPUs. Another
future research direction involves a novel NeRF network, which can
render images from multiple poses simultaneously on a single GPU.
In this direction, an efficient method of caching scenes between
viewpoints [12] can be applied.

Perceptive Alignment with Real Environment. The appearance
reproduced by our framework will be improved by blending the
image with the environment in which the display is placed, such as
color and dynamic range correction, depth-of-field reproduction, and
relighting. Although various works regarding relighting in NeRF
exist [2, 26, 37], to the best of our knowledge, no model has been
proposed to perform it in real time.

7 CONCLUSION
We proposed NeARportation, a framework for displaying photo-
realistic appearance with remote rendering and a neural renderer.
The proof-of-concept system on a face-tracking stereoscopic dis-
play showed that our framework can interactively present objects’
complex appearances (e.g., specular reflection, structural color, and
subsurface scattering) from the easily available color images. We
also described the prospects for improving such remote rendering for
photorealistic appearance. Our work aims to inspire the community
along this framework to further improve the system, such as higher
frame rate and more accurate head motion tracking. We believe this
work opens the door to AR/VR experiences that are NeAR reality.
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