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I. INTRODUCTION

Human perception integrates information from multiple
sensory modalities. In tactile perception, both kinesthesia
and touch are crucial for understanding object properties [1],
making haptic interfaces valuable for system enhancement.
Visual and auditory inputs also influence surface percep-
tion, highlighting the potential of datasets that integrate
these modalities. Against this background, the creation of
comprehensive multimodal haptic datasets [2]–[5] has been
actively pursued to advance texture perception research and
the development of sophisticated haptic interfaces.

Many prior studies have recorded visual, auditory, and
tactile data by freely exploring textured surfaces with rigid
probes [2]–[4] or human fingers [5]. However, to our knowl-
edge, no existing dataset simultaneously captures visual, au-
ditory, and tactile modalities with controlled sliding velocity
and direction. Sliding velocity and direction significantly
influence tactile signals [1]. Precise control of these factors is
essential to ensure reliable analysis. Analyzing how acoustic
and tactile signals vary with sliding direction and velocity
will advance perception research.

Therefore, we propose the Cluster Haptic Texture
Database, a multimodal dataset of haptic signals from an
artificial fingertip sliding over surfaces (Fig. 1). The dataset
includes sound and acceleration data recorded at five ve-
locities, eight directions, and two pressing forces for 118
textures. We conducted classification experiments for texture,
velocity, and direction using our dataset to demonstrate that
our dataset contains sufficient discriminative features.

II. METHODS

A. Texture Data Measurement System

We constructed a sliding-interaction measurement system
(Fig. 2a) by repurposing a 3D printer (Ender-3 S1, Creality)
as an XYZ stage. We attached a cylindrical urethane rubber
fingertip with Shore A15 hardness and 15 mm diameter to
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Fig. 1: Concept of our Cluster Haptic Texture Database.
Controlled directions and velocities of the sliding artificial
fingertip are added to conventional haptic datasets.

the moving part of the XYZ stage. We utilized two nondirec-
tional microphones (M30; Earthworks) for audio recording:
main microphone at the fingertip to capture texture-induced
sounds and sub microphone on the printer frame to record
mechanical noise. Both microphones exhibited a flat fre-
quency response ranging from 10 Hz to 30 kHz and operated
at a sampling rate of 44.1 kHz. A load cell (SC616C-1kg;
Sensor and Control) measuring contact forces up to 9.8 N
with 0.005 N accuracy (using an HX711 ADC) was mounted
on the fingertip. A 3-axis MEMS accelerometer (IIS3DWB;
STMicroelectronics) capable of measuring ±16 g with 75
µg/√Hz noise density was also mounted on the fingertip.
We implemented a multithreaded Python application that
synchronized and formatted sensor streams with kernel-
timestamp alignment. The entire setup was enclosed in a
soundproof chamber to suppress ambient noise (Fig. 2b).

B. Recording Procedure

Prior to haptic data recording, we captured texture images
(1181×1181 px, 300 dpi) using a flatbed scanner for all
materials. During recording, we performed 160 linear traces
(80 mm length) for each material, systematically varying
five velocities (20-60 mm/s in 10 mm/s increments), eight
intercardinal directions, two pressing forces (0.5 N and 1.0
N), and two repeats. Before each measurement block, we
adjusted the fingertip height to achieve the target force. After
data recording, we performed post-processing including ac-
tive noise cancellation of audio to remove mechanical noise
and temporal synchronization between sensors.



Fig. 2: System overview: (a) Hardware setup for texture
data measurement system. (b) The equipment is placed in
a soundproof enclosure during data recording.

C. Textures

We prepared 118 materials in nine categories (Wood,
Stone, Polymer, Metal, Glass, Composite, Ceramic, Bi-
ological Leather, and Cloth) following previous haptic
databases [2], [5], and mounted them on a magnetic sheet.

III. EXPERIMENTS

We conducted three classification experiments using the
proposed dataset to investigate whether our dataset contains
sufficient discriminative features: texture (118 classes), ve-
locity (5 classes), and direction (8 classes) classification
using audio and acceleration signals.

A. Setup

1) Data Preprocessing: We converted both audio and ac-
celeration signals into log-mel spectrograms, which provides
a frequency representation suitable for machine learning.

2) Classifiers: We used pre-trained CNN (ResNet34),
Vision Transformer (ViT small), and SVC as classifiers. The
CNN and ViT treat log-mel spectrograms as 2D image-
like data. We flattened the spectrograms for SVC into 1D
feature vectors following previous haptic studies [5]. We
also developed a multimodal classifier combining audio and
acceleration data. The architecture uses separate CNN/ViT
encoders for each modality, followed by transformer layers
for feature fusion and fully connected layers for classifica-
tion. For classical approaches, we concatenated flattened log-
mel spectrograms from both modalities [5].

3) Training and Evaluation: We split the texture dataset
into training (70%), validation (10%), and test (20%) sets.
We evaluated classifiers using accuracy metrics, averaging
results over five runs with different random seeds.

B. Experiment I: Texture Classification

Figure 3 shows the texture classification results. The CNN-
based classifier achieved the highest accuracy (96.0% with
multimodal data) among all models. This indicates that our
dataset’s 118 textures have distinct features that CNNs can
effectively capture. The lower performance of acceleration-
based classification compared to audio-based suggests that
acceleration signals may contain less distinctive texture fea-
tures than frictional sounds.

Fig. 3: Texture classification performance across three ma-
chine learning models, showing mean accuracy values from
five-fold cross-validation with standard deviation error bars.

Fig. 4: Velocity and direction classification performance
across all textures, showing mean accuracy and standard
deviation across all textures.

C. Experiment II: Velocity and Direction Classification

Based on Experiment I’s results, we used the best-
performing CNN-based model for velocity and direction
classification.

Figure 4 shows the classification results. The multimodal
approach achieved the highest accuracy (88.8% for velocity,
78.8% for direction). The high accuracies, well above chance
level, confirm that our dataset contains discriminative fea-
tures for sliding velocity and direction. The large standard
deviations indicate that the distribution of motion-dependent
features varies significantly across different textures.

IV. CONCLUSION

We proposed the Cluster Haptic Texture Database, com-
prising 118 textures explored at five traversal velocities, eight
directions, and two force levels, and capturing synchronized
visual, and tactile signals using an XYZ stage. We aim to
make our dataset publicly available by the conference date.
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